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INTRODUCTION
This,report constitutes a Semi-Annual report for
contract N00014-73-C-0270 administered by the office of
Naval Research. The research is ?eing carriec out at

Systems, Science and Software. (S')

The research performed under this contract is a
c?ntinuation of work begun under a previous contract at
S to investigate methods for determining the sensitivity
of the results of complex calculations to uncertainties
in the modeling parameters entering the calculations.
The emphasis to date has been concentrated on non-
equilibrium chemical kinetics systems, to determine the
sensitivity of calculated concentrations to experimental

uncertainties in the rate coefficients.

In the previous contract, a method called the ,
- Fourier Amplitude Sensitivity Test (FAST) was developed 3
and appliecd to two simple chemical systems. It was shown
that the method does provide a measure of the relative
-contribution from each rate constant uncertainty to the

uncer tainty of the calculated concentrations.

The present research effort is just getting under
way, and consists in applying FAST to two particular
chemical kinetics problems of interest to the high
altitude fireball community. Results from this work

will be available soon.
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The work that was done in the previous contract has
recently been written up in two companion papers which
have been accepted by the Journal of Chemical Physics for f
publication. Preprints of these two papers are included i
as the remainder of this report. k
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ABSTRACT
F A method has been developed to investigate the sensitivity of the solutions %i
1 % ’ of large sets of coupled, non-linear rate equations to uncertainties in the rate ?t}
% é' | coefficients. This method is based on varying all the rate coefficients simul- ;
3 E taneously through the introduction of a parameter in such a way that the output ;'T
‘; ; s concentrations become periodic functions of this parameter at any given time t. ? i
::% The concentration of the chemical species are then Fourier analysed at time t. {j
.i j We show via an application of Weyl's ergodic theorem that a subset of the Fourier il
; é; » coefficients is related to §§i>, the rate of change of the concentration of . ?
b & species i with respect to the &ate constant for reaction 2 averaged over the ’gl
: uncertainties of all the other rate coefficients. Thus a large Fourier coeffi- % ?
cient corresponds to a large sensitivity, a small Fourier coefficient corresponds i‘f
to a small sensitivity. The amount of numerical integration required to calcu- 3;"
Tate these Fourier coefficients is considerably less than that required in tests 1
of sensitivity where one varies one rate coefficient at a time, while holding {
all others fixed. The Fourier method developed in this paper is not limited :
to chemical rate equation, but can be applied to the study of the sensitivity ?”f

of any large system of coupled, non-linear differential equations with respect

to the uncertainties in the modeling parameters.




I. Introduction

Sets of coupled, non-linear rate equations arise in a number of disciplines.
A classic example is that of chemical rate equations. In ine study of combustion,
air-pollution, upper atmosphere phenowena and chemical lasers as many as 100
coupled rate equations involving some 50 separate species may be needed to
account for tne properties of such systems. One is then faced with the problem

of solving a large set of coupled, non-Tinear differential equations of the form
- 'r-*[z].{k}] (1.1)

when ¢ is a vector of concentrations, (k} a set of rate coefficients and © some
complicated function of the concentrations. While one may prove existence and
stability theorems for the equilibrium point(]), tne only way to solve the§e
equations, i.e. to obtain all the species concentrations as functions of time,
is through the use of a high-speed computer.

Unfortunately, the rate coefficients (or cross sections) for many reactions
are not known with high accuracy and indeed may be uncertain by one or more
orders of magnitude. This gives rise to the very important problem of
"sensitivity" which may be defined as the effect of uncertainties in the rate
coefficients on the calculated concentrations of all the various intermediate
and product species. The uncertainty in the rate coefficients of certain
“important" reactions in the reaction scheme may have a significant effect on
the output function (for instance, concentration at time t), while uncertainties
of the same magnitude in rate coefficients of "unimportant" reactions in the

reaction scheme may hardly effect the output function. The reliability of the
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output numbers clearly cannot be established without knowleds: of the sensitivity
of the output data tn the uncertainty in the input parameters.

@® The problem is to find a practical method of determining the effects of

the uncertainties in the rate coefficients on the solutions of the rate equations.
Since we are interested in the situatinrn where the unc:rtainties in the rate
coefficient may be orders of magnitude, Tinearization schemes are not appropriate.
A "brute force' method of investigating the sensitivity is not feasible as can
readily be seen from the following example. Suppose we have a reaction scheme

wiich has n coupled reactions involving m different chemical species. Let us

furthermore assume that we wish to calculate the concentrations of the m species
at some time t for z different values each of the 2n rate coefficients. If we
now change one rate coefficient at a time while holding all the others fixad,

we would have to carry out z2n

integrations of %he rate equation (1.1) to time t.
For the m different species, this procedure wiil give rise to a print-out of
m(z)2n concentrations. If we know to a good accuracy the equilibrium constants
for all the reactions and apply the principle of detailed balance, the numbef
of independent rate coefficients will be reduced to n and we would have to carry
out 2" integrations up to time t for each species m. In either case, for n
large, it is obvious that the time and expense involved in such an analysis of
sensitivity is prohibitive and the print-outs so numerous as to defy a simple
analysis of the results. Clearly, one needs to devise some more powerful
method for the study of sensitivity.

Our approach to this problem is to ask for a Tess detailed description of

the effect of rate coefficient uncertainty on the output function at any givon

time. e vary all the rate coefficients simultaneously so as to explore the
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entire space of uncertainties in the rate coefficient set {k}. As will be seen
below, this turns out to be equivalent to varying a single rate coefficient and
then averaging tihe attendant concentration changes over the uicertainties of all

the other rate ccefficients, where we express this uncertainty in terms of a

probability distribution. Our approach is thus related to a "mean field" theory
where we represent the fluctuations of the field by the uncertainties in the '
(n-1) rate coefficients over which we average. ;

To carry out this program, we relate each rate coefficient ki to a firequency f

W, and introduce a parameter s which simultaneously varies all the rate coef-

ficients in such a way that the concentrations at a fixed time become periodic

functions of s. The concentrations can then be Fourier analyzed. e then show
that a certain subset of these Fourier coefficients can be related to the first
partial derivative of tne concentration c, of species i with respact to a rate
coefficient kz averaged over the uncertainties of all the other rate coefficients.
A large varue of the Fourier coefficient A(i) then shows that <;C >is large,
i.e. the effect of a change in the &'th rat: coefficient on the concentration

of species i is significant Conversely, a small Fourier coefficient A( )
indicates tnat< > is small, i.e. the effect of the variaticns of thQJJ ith
rate coefficient on the concentration of species i is small. In order to calcu-
late these Fourier coefficients, we must integrate the rate equations numerically
up to the desired time for cach value of the parameter s. The number of s values
which we include in our parameter set determines the accuracy to which we can
calculate the Fourier coefficient; the larger the set of s values, the more

accurate the determination of the Fourier coefficients.

Since we must still perform numerical integrations of the rate equations
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(1.1), the question arises wny ihis method is to be preferred to the more
direct method of varying each rate coefficient separately while keeping all
: others fixed. As will be shown in paper IL which deals primarily with the
computer calculations, the number of integrations required by the Fourier
method is 0(n") where r is a small integer (r<10) which depends upon the choice
of the frequencies wis i=1,2,...,n. It can readily be verifiad that for n,
z large, n" (z)n. The computational economy of this method of analysis thus :

becomes more pronounced as n, the number of reactions, increases. The reason

for this reduction in the number of required integrations up to time t is to

: be found in the fact that in the Fourier method we sample the c(k) space at

i i cuu il Sl St 4 hme b T

a set of points determined by the values of the set {s} and the vector o,
whereas the "brute force" method involves neither sampling nor the simultaneous

variation of the set of rate coefficients {k} and thus requires many

more integrations of the rate equations. As will be clear from the body of

the paper, this sampling in a certain sense corresponds to the averajing over

all the rate coefficients. The reduction in the number of required integrations

is thus intimately related to the use of a "mean field" theory.
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Our results are presented in two papers, I and II. in paper I, we present

thé theoretical basis of our method without explicit reference to the verifying

computer experiments. In paper II, we present the results of our computer

calculations as well as a detailed discussion of the problems involved in such ?'}

calculations.

It should be pointed out that the utility of this Fourier analysis method

of testing sensitivity extends beyond the confines of chemical kinetics and : 3

beyond the confines of differential equations. Large sets of coupled, non-

linear equations are used in many fields such as economics, population dynamics,

weather forecasting, systems analysis, operations research, etc. for modeling
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and predictive purposes. As has heen pointed out by a numbar of investigators,
it is important that sensitivity tests be carried out on such systems to
identify the critical parameters and to validate the applicability of the
models. The method developed here can be applied to any set of equations,
differential, integral, algebraic, etc., which yield an output as a complex
function of many parameters. In fact, we have used an analytic functijon of
several variables to test some of our ideas. e plan to apply this Fourier

method to the analysis of other complex systems in the near future.
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1. Fourier Analysis

The rate equation for coupled chemical reactions which obey the law cf

mass action can be written in the form

(i=1,...,m)

where ci(k],...xn;t) 1s the concentration of species i §t time t, Vp i F Ve iT Vri

is the stoichiometric coefficient of tne species 1 in reactionr, with SN paol

labeling the different reactions in the reaction system, and where kr(k ks

]
the forward (backward) rate coefficient for reaction . The coefficients Ve
H§

and v, i .dreé non-negative integers so that the stoichiometric coefficient
]

Vi defined above can be positive, negative or zero. From the form of the rate
equations (2.1) one can prove that the concentrations are bounded and non-negative,
that they are continuous functions of the time and the rate coefficients and
that an equilibrium point exists.(])

In order to determine the effects of uncertainties in the rate coefficients
kir on the concentrations C; at time t a systematic method for varying the k's

must be developed. e define

>~
|

; = Klodgy; (i=1,...,m (2.2)

and

where kgo)is the "best value" of the rate coefficient (i.e. the one which the
investigator believes to be the best available value based on experiments or

calculations), the "frequency" w, is a positive integer, s is a parameter and fi

=7
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is a function to be determingd. The introduction of the parameter u; and the
form of Eq. (2.2) permits one to effect readily orcer of magnitude changes in
the rate coefficients. The form of equation (2.3) permits one to vary simul-
taneously all the rate coefficients by varying the parameter s. The rapidity
of the variation is determined for each ki by the magnitude of the wi's. The
w; are chosen to be positive integers in order that the concentrations at a
fixed time t become periodic functions of s with period 2

ci(s;t) = ci(s v 2l (2.4)

In the development to follow we suppress this dependence of the concentrations
on time, it being understood that the analysis is carried out for a fixed time t.
) The concentration as a function of s descrites a closed path. That is,

for eacn i and for every value of s we obtain a point in K space with value

- - - -
ci(k); as s cnanges by 2v we return to the same valucs of k and u, [sece egs.

> (2.2) and (2.3)], and, from equation (2.4), to the same value ci(s). Since
ci(s) 1s periodic on 2r we may expand it in a Fourier series

pli) =
» c.(s) = 9._.+ E ( sin rs + gli) cos rs) ! (2.5)
i 2 = r
r=1
In the analysis presented below we are interested only in the Fourier sine
coefficients Ar that correspond to the original input frequencies wes i.e. the

coefficients given by

2
f ci(s) sin w,s ds . (2.6)

L=1,2,...,n

We now wish to relate the Fourier coefficients A£1) to the effect of the
2




R

{% variation of tne rate coefficients kr and the concentrations c,. In order to
5,{. do this it is necessary to relate the s- space integral of Lq. (2.6) to a n-

:,; ) dimensional integral over the entire Ui space. It can be shown that if the

E'; entire U space is covered densely as s is varied, then the integrals over the

1 év s- space and the U space yield identical results. This is Just a statement
‘;‘E ) of tne ergodic tAeorem which permits one to equate time and phase space averages
ivii in statistical mechanics.(z) If the frequencies wi in Eq. (2.3) were chosen to
; ] be incommensurate, then the function ci(s) i.e. the concentration as a function
é 3 ) of the parameter s, would be an almost periodic function. This implies that

f‘: the path in the space R"(d), where the 9's are defined by

' 0= w;s  (mod 2r) (2.7)
? 2 returns arbitrarily close to any initial point as s—. One could then equate
;} ; the s- space integral with the integral over the n- dimensional © space as was

; 1 > first proved by Hey].(3) However, the use of an incommensurate set of frequencies
5 f W, in Eq. (2.3) would require that the numerical evaluation of the Fourier

; % coefficients sz of Eq. (2.6) be carried out over an infinjte period. This

3 f,. clearly is not a feasible procedurg on any known computer.

i ? It is for this reason that we introduce integer frequencies Wy i NREQER (2R3N
3:;" Their use leads to a finite period (0 to én) analysis which can readily be
iLi ; » handled on a computer. Tnis will give rise to an error in the analysis since
.Z'ﬁ now the "phase point" will no longer densely cover the U space as s is varied

1 ﬁ. and the s-space and U space integrals therefore do not yield identical results.
i

; ; Let us for tne moment ignore this error and use Weyl's theorem for our

;f g periodic function c(s). Ve write

1

s b Aii) - (; X fzn...fznﬁ 405 ci(8,5...,8) sin 0, . ~ (2.8)

- T o 0o j=l

Fq
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Tliis expression can be put in a more suggestive form as follows. The %'th

integral is rewritten by integration by parts as

) 2n . 2n 8
??'.[- dO2 c(Ql,...On) sin QZ = 5 sz ae cos 6, (2.9)
0

I

where the boundary term has vanished by the periodicity of the integrand. The

use of £q.(2.9)then permits us to rewrite Eq.(2.8) as

A = f f dO =~ COS O | (2.10)
1A :T

The 8 space integral must now be related to the u space integral. The transfov-
mation is (see Lqgs. (2.3) and (2.7))

df (sin 0.)
d '—a'—s—_{—n—r Ccos QJ dUJ (2.1])

where we require that fj be a monotonic function of its argument. Then

i (+] f_(+]
A(i) . -2_— s '|(+ ) j- ”(.+ )
3 5

: 1) (1)

ocC.
duj cos 8 —L1

L auz . (2.12)

BfJ(SM 9.}

d sin O

{4
S| b

cos O

W
=

J
In order to obtain a definite relation between Ai]) and ac]-/au£ we must choose
2
some particular form for the function fj(sin Oj). There are several choices which

lTead to useful expressions tor the 651); as will be seen below, a particularly

%
advantageous choice is to set
3f . (sin 8.)
J J 2 1
e & E= (2.13)
—~ T C0S b
d sin j J aJ |
where a; is a parameter. The use of Eq. (2.13) in Eq. (2.12) leads to
Lk
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(1) 2 tea o ac]
A‘*’z _ann j- J’ T]"duj a; cos QJ&T ; (2.14)

e §=1 5

Integration of Eq. (2.13) yields

i _ ] TIEEUSH TROR
fj(s1n QJ) =uj = 2n [;—~——~»-J]

el (ST 18]
j j

and also indicates the range of integration in Eq. (2.14). Lxpressing cos Qj

as a function of uj from Eq. (2.15) gives for Eq. (2.14)

) 4 to n a 3¢
Au(’]) -2 J Trduj J I (2.16)
; o =]

cosh a.u. Ju
Iy i

j ...J dUJ —C—O—ST‘]_ET =7 (2.]7)
-co0 - j=1 JJ

we obtain as our final result

. A£1) < g—- (3c;/3u, ) (2.18)
b L 3

a4 where the bracket in Eq. (2.18 1s defined by

& o n

b .[m ;[E p(ujg aj) Y(u], ,un) du B9
' (Y(u]"' ’u )> o

:j:

i <0
-
T
i ' 0 J:m

i J

and

u,; a.) du.
P J aJ) ud

]
—_

a.

3 P =k )
p(uJ,aj) ~ "cosh ajuj . (2.20)

The function p(uj;aj) can be interpreted as a distribution function in u space

2t il e ot
R e % 3L

which weights the uncertainty in the rate coefficients, Equation (2.18) is the
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desired relation between the Fourier coefficient A£1) and the change in the
)
concentration of species i witn a change in the .'th rate coefficient, aci/auz,

averaged over the changes of all the other rate coefficients.
The particular form of fj (sin Qj) that we have chosen, Eq. (2.15), has
lead to a weight function p(ui;aj) for each rate coefficient, Eq. (2.20), which

has several convenient properties. As a function of U the function p(uj;a.)

s symmetrically bell shaped about uj=0 corresponding to kj=k§°), the "best"
value of the rate coefficient kj' As a5 wnich is a parameter at our disposal,
is increased, the weight function p(uj;aj) narrows about uj:O; this corresponds
to a decreased spread in the values of the rate constant kj, i.e. it corresponds
to a narrower range of the uncertainty of kj around k§0). In the Timit as aj—yn,
one obtains

1im p(uj;a.) = n6(u.) (2.21)

=k J J

J

where §(x) is the delta function of argument x which implies that the rate con-
stant is known with certainty to be k§o). When some information is available
on the spread and distribution of the rate coefficient kj about
its "best" value k§o), one can determine the aj through the standard deviation

. o>
of the values in u space

b= = I__ .
<uj) 7 J_ cosh a;u; 4 (2.22)

=1}
Cue PN =

from which it follows that

n 1 .
Gl 4 & oy | o . - (2.23)
2 2.1/2
(uj)

e
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The parameter aj thus permits us to introduce explicitly the spréad of uncertain-
ties in the values of the rate coefficients into our analysis.

To calculate the Fourier coefficients ﬁﬁi) we must first choose a suitable
set of wj's and aj's. What constitutes a “sﬁitab]e" set of w's will be discussed
in the next section in conjunction with the error analysis and in more detail
in paper II. Thé set of uj'S defines the uj's as a function of s according to

Egs. (2.3), (2.7) and (2.15). For each value of s one obtains a value of the

concentration Ci(k]""’kn)‘ In principle one can then compute the A£1) to any
L
desired accuracy by taking enough values of s,

s = g%ﬂ a1 61 8 Vo2 ey (2.24)

where m is some integer.

It %s important to point out that our main interest is in identifying those
rate coefficients whose variation significantly e“fects the concentraticn c.
of a species i at time t, and those rate coefficients whose variation hae only
a minimal effect on the species concentration C- Thus if one of the Fourier

coefficients, say A£1), is one or more orders nf magnitude larger than all

il

other coefficients A£1), £ =1,2,...,n, (273), than the variation of the j'th
)

rate coefficient kj’ clearly has a larger effect on the concentration Ci(t)

than the variation of the other rate coefficients. If on the other hand all
(i)
“2
then the concentration of species i at time t, ci(t), is effected essentially

the coefficients A''/, ¢ =1,2,...,n, are of the same order or magnitude,
equally by the variation of any of the rate coefficients kz'
~ One problen with the above analysis must be pointed out. The Fourier

coefficient Ai1) of Eq. (2.18) may be small either because aci/au, is small over
9‘ A

5%

s i i A

P TR
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the whole range of integration of Eq. (2.19), which is the case discussed above,

or because aci/au; changes sign one or more times in the range of integration.

Thus, a small value of Ai]) does not necessarily imply that the concentration c,

2
is insensitive to changes in the rate coefficients. The remedy for this diffi-

culty would be to find a relation between the Fourier coefficients, or a combination
of Fourier coefficients, an¢ an everywhere positive (or everywhere negative)
function of the rate of change of the concentrations with rate coefficients, such
as for instance ((aci/aug)z). We have, however, not been able to establish
such a relationship and it seems doubtful that a sinple relationship of this form
exists. In carrying out computer calculations it should, however, not be too
difficult to verify whether aci/auz at any given time t is monotone or not in
the range of integration over the u space,

Thus while one can assert that a large Aif) implies high sensitivity of the
concentration of species i with respect to changes in the rate coefficient Kgs
the converse statement does not necessarily follow without checking on the niono-

tonicity of ac/au_as discussed above.
g L
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IT1. Choice of the Frequencies W

» ;
4 As we have mentioned above, the application of Weyl's theorem in going from s ’f
} space, Eq. (2.6), to the U space, Eq. (2.16), via the § spaée, Eq. (2.8), must lead to i
-; 4 an error in the aﬁa]ysis since we use commensurate (integer) frequencies. Tiis %
4

error can be minimized by a judicious cnoice of the integer frequencies iy and
the number and wagnitude of the m values of the parameter s given by Eq. (2.24).

L e 1imit ourselves here to some qualitative remarks which will, however, clearly

P ARt B e

indicate the nature of tne problenm.

e

The integer frequencies W, lead, according to Egs. (2.7) and (2.24), to a

Q g 5 . 73 q b
r covering of tie n dimensional © space by an array of points as q takes on its

Ko abds

integer values q=1,2,..n. Clearly one nbtains a better coverage of tie & space

and thus reduces the error in applying Veyl's theorem if one can increase the

density of points in the n-dinensional typercube and if one can distribute the
paints uniformly within the space. Since w and q are both integer, the points

25 (mod 2¢) will form a regular lattice in 9 space. Our objective will be to

make this point lattice which is completely generated by a unit cell, as uniforn

. as possiole in all n directions by a judicious choice of the w's. As our measure

-?}' of uniformity we take a nypercubic unit cell. Without further information about

a4 the behavior of tnhe output function this seems the most reasonable choice.
For a fixed number m of s points, chosen for computational convenience,
ve will try to find a vector % (of the infinite set of w's) which gives rise

to a nypercubic unit cell. Once having done this we can assert, without loss
2n
m

lies along one edge of this hypercubic unit cell whose

# of generality, that

ok , ‘ |
lergth is gLﬁf;L . There are now two ways to compute tne volume V of the

A el
-

if
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unit cell. In the n dimensional § space, it follows from the above construction

that

m o

V(L‘t_ni)" (3.1)

But we also know that the total volume of the n-dimensional © space is (2n)n.

Since there are m unit cells in that space, it follows that

V= ],—] (25" (3.2)

Equating (3.1) and (3.2) then yields

n-1

o] =m "

(3.3)

for tne relation between the minimum length of tne vector 3, the dimension n
and tne number of s points, m, for a point lattice composed of nypercibic
unit cells.

The condition expressed in equation (3.3) yields important insigit into
the judicious choice of the frequencies Wy For systems with large dimensions,
i.e. a large number n of rate coefficients (or coupling parameters in general;,
|| approaches m. Thus, the choice of the number m of s points for the numerical
computation determines the value of o and thus guides one in the choice of
the wi's. Since one would expect the error in the analysis due tq the use of
integer frequencies w; to be of order 1/m, i.e. inversely proportional to the number
of unit cells, it is evident that one should cnoose a large value of m to carry
out the calculations. This in turn implies frﬁm Eq. (3.3) a large |o].

The analysis leading to Eq. (3.3) is based on the construction of unit

ey o e . q
cells wiicih are exact hypercubes. Since |w|, m and n are all integers it may




not be possible to fulfill condition (3.3) exactly for all (arbitrary) choices
of mand n. It is easy to show this. Let us, for instance, square both sides
of Eq. (3.3) and let n = 5. We are then required to find an integer m such that
> 2 8/5 - "
we can express a sum of n squares, [w| , as m’'~. Clearly, this is possible,
1f at all only for certain special values of m. To be more realistic, we shoul:
weaken our criteria for uniformity of the point lattice by stipulating unit
cells which are as close as possible to hypercubic and then rewrite sy, (R 6

n-1 , (3.4)

&) = m T,
For n >>1, for which both (3.3) and (3.4) reduce to IZI = m, it should be
possible to obtain a more nearly exact hypercubic unit cell.

The question as to the "optimum" choice of the w's has been considered by
a number of autnors, using a different approacu from tnat presented above, in
connection with the general problem of the approximate evaluation of multi-
dimensional integrals via discrete summations(q). Korobov's book has tables
of wi's for a given number of points m (for m prime) and dimension n up to
n=10. These tables are reprinted in the book by A. H. Stroud. It is inter-
esting and comforting to note that although these tables were computed from
completely different criteria than~those employed by us, the Korobov w's indeed
generate hypercubic unit cells to a very good approximation for a11lhis sets 01 =
for which we have carried out the appropriate calculations.

Korobov's analysis of the error in the use of integer frequencies yields
explicit prescriptions for calculating the "optimum" set of q{s as given in his
taS]es. Our approacn presented above does not yield such an explicit algorithm.

vie plan to develop suci an algorithm and then compare our sets of » with those

of Korobov in a subsequent publication.

174
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frequency
As stated abeve, if one wishes to decrease tie error in the integer . analysis,

, one should use a large number  m of s points and thus a large |w|. It can

'readi]y be verified from Eq. (2.6) that for large ws one needs to evaluate
c(s) for a larger nunber of s values in order to obtain an accurate value for

£

E ]

'% b the Fourier coefficient Ai]). This requires more extensive computer calculations.
!
| A reasonable compromizc between these two effects needs to be adopted.

The transformation from U space to ® space as given by Eqs. (2.3) and (2.7)
: % r will also effect the error term since the specific transformation which is chosen

determines the rate of change of the function c(s) as a function of s. We are

R L A R SR S gy e AL

faced nere with an interesting problen in compensating effects. Ejther the

e

L g transformation u; = ui(Q) is singular or the weight function p(ui;ai) is singu-

lar at one or more values of u . For the chosen transform it is readily veri-

fied from E¢s. (2.15) and (2.20) that u diverges at 8 = 11/2 and 6 = 31/2, but
: ¥ at these points p(ui;ai) = 0. This came effect will be found for any transfor-
{ mation and its associated weight function. Tnus in the regions of 2 space

f é there the transformaticn is divergent the associated weight function will

;{‘} L always compensate. We are therefore led to expect that the choice of the

& transformation function will not significantly effect the final numerical results.
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This is born out by the data presented in paper II,
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ABSTRACT

The Fourier amplitude method developed in Part I as a diagnostic tool

for determining the sensitivity of the results of complex calculations to the
parameters which enter these calculations has been applied to two chemical
reaction systems involving sets of coupled, non linear rate equations. These
were: a) a 5 reaction set describing the high temperature (6000°K) dissociation
of air and b) a 9 reaction set describing the constant temperature (2000°K) com-
bustion of H2 and 02. We have evaluated the Fourier amptitudes for all the
speciés at a number of different times for both reaction systems. The analysis
of these results verifies the claims made in part I. The relative magnitudes

of the Fourier amplitudes showed a several order o% magnitude distribution which
permitted a clear distinction of the relative sensitivity of the species concen-
tration to uncertainties in the rate coefficients. The conclusions based on the
Fourier amplitude method for these two reaction systems are in excellent agreement

With sensitivity predictions which could be made on the basis of previous kinetic

studies of these systems.




I. INTRODUCTION

In the preceding paper, hereafter referred to as Igl) we developed a
diagnostic technique to investigate the sensitivity of the solution of large
sets of coupled, non-lincar equations to uncertainties or cﬁunges in the coupling

parameters. For brevity, we will refer to this method as FAST, the Fourier

Amplitude Sensitivity Test. In this paper we wish to demonstrate the utility | é
of FAST by applying it to a study.of the sensitivity of two sets of coupled 4

non-lTinear rate equations describing, respectively, the high temperature

dissociation of air and the high temperature H2 - 02 reaction. The specific

objective of the calculations described here was to determine the sensitivity
of the various species concentrations at a particular time to assumed uncer-
tainties in the rate coefficients which enter into thesc calculations.

In Section II we summarize the steps which must be carried out in the
application of FAST to any system of coupled non-linear equations and discuss
the choice of frequencies and the number of sampling points to be used. In

Section III, we present the sensitivity analysis for the two chemical reaction

systems. Section IV contains some concluding remarks.

IT. GENERAL REMARKS ON APPLICATION OF FAST

We wish to determine the sensitivity of an "output function", in our

case the calculated concentration of a particular species at a particular time,

to assumed uncertainties in the rate coefficients entering the rate equations. 3
He write this output function as é
(s o5 Bood BREE(d (2.1) |

where X is the n- ‘component vector of the rate coefficients Kys k2’ T k”. | 3
%

'E
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The application of FAST is carried out via the following steps:

Step 1) One must choose a set of n integer frequencies, fwys

Wos +ves wn},
where n is the number of independent rate coefficients which determine the é 3
value of the output function. i“
Step 2) One frequency of this set is now assigned arbitrarily to each ;
rate coefficient by (see 1.2.2): |
u. ;:'
k, = klo)g (2.2)
i i k
RN (G} It i
up = ug sin wgs (2.3) !
(o) . : - - E
where ki is the best estimate of the rate cocflicient, s is a paramcter and | 4
the u.(o) 3 ' L i REE .
i are the endpoints of the estimated renges of uncertainties of the
*-ﬁ rate coefficients ki’ If a rate coefficient is known precisely, i.c. with zero
. f uncertainty, then ki = kgo) which implies ugo) = 0. The endpoints ugo) are
specified as part of the jnput data and their values should be based on the best 1 ;i
judgement of the investigator, ]

Step 3) The output function c(E) = c[K(s)] is now Fourier analyzed in

s to obtain the sine amplitudes Aw corresponding to the input freguencies ws . 5
i 4
This analysis requires the evaluation of C[K(s)] for N values of s, where N is

an integer which depends on the frequency spectrum of c[k(s)]. # 3
f These steps will now be discussed in more detail. . ;
,fj a) Choice of Frequencies w i

In section IIT of part I we have presented a discussion of the choice

. - . 1
of the set of frequencies {w} and have also given there a set of references

e

(ref. 4) which contain both discussions of optimal choices of sets of frequencies
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as well as tables of frequencies which could be used for FAST. For the calcu-
lations presented here we have developed our own set of frequancies. We have
done so to obtain a better insight in how to handle the calculations involved
in the Fourier analysis method. In a fo]]ow;on stuﬁy we plan to investigate
whether our method of choosing Trequencies yields better, equivalent or worse
sets for use in FAST than those presented in reference 4 of part I.

Since we will carry out computer calculations, we are limited to rational
(or, equivalently, integer) frequencics. For the coupled non-linecar equations
under study here, this means that in addition to the input frequencies W and
their multisles, various linear combinations of integer multiples of W,
("interference frequencies") will appear in the spectrum of c[ﬁ(s)]. This
presents.a problcm in our analysis since the Fourier sine anplitude of frequency
w, is to reflect only the effect of the uncertainty in the value of the rate
coefficient kz' Clearly, if an interference frequency coincides with one of the
input frequencies Wey SAY G, the corresponding Fourier amplitude Awg will not
only reflect changes in kz but also in other rate coefficients. Thus, for

example, if Wy g - Wy =, the amplitude sz is identical with A(w]+w3_m4)

and will therefore reflect not only chanyes in k2’ but also 1in k], k3 and k4.
One therefore needs to choose a Tinearly independent set of input fre-

quencies W, such that

n

:E? a;w., # 0 a, integer (2.4)
4 1 1 .

i=1

for
n
la.] =M +1 (2.5)

o 1

i=1




where M is a parameter at the disposition of the investigator, e refer to

such a set as being free of interferences to order M. The Targer the chosen
value of M, the greater the likalihood that the Fourier amplitude of cach input
frequency reflects solely the uncertainty of the corresponding rate coefficient.
On the other hand, as discussed in section 111 of part I and below, the larger

the chosen value of M, the larger the maximum value, ¢ ., of the input fre-

max
quencies w; Which will still satisfy (2.4) and (2.5) and, correspondingly, the
larger the set N of points s which will be required for the evaluation of the
Fourier amplitudes. For the calculations presented in fhis paper ve have chosen
M= 4. 1In Table I we present sets of frequencies which are free of interferences
to 4th order for systems with dimensionality n from 5 to 19, i.e. for systems
with from 5 to 19 independent rate cocfficients. These frequencies were
determinﬁd via computer by a trial and error procedure. The sets of frequencies
listed here have the smallest value of Yinax satisfying conditions (2.4) and

(2.5) and are referred to as "minimal sets".

b) Assignment of Frequencies to Rate Coefficients

The frequencies {m], Wos w5 wp} are assigned to the rate coefficients
{k], k2, s i kn} arbitrarily since the results of these calculations, in order
to be useful, must be independent of both the Trequency set and the assignment
of the frequencies. To check that the spectrum of the output function does not
contain interfering frequencies which coincide with the input frequencies, and
thus affect the results, one should reassign the frequencies to the various rate
coefficients and reﬁéat the Fourier analysis. . If the calculated Fourijer ampli-
tudés are invariant in magnitude and sign to these permutations, then the set of
frequencies s free of interferences to the order of the dimensiona]ify of the

set of rate cquations and the results of these calculations are reliable. T
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on the other hand, some of the Fourier amplitudes vary greatly with the permu-
tions of the frequency assignients, a better set of input frequencies must be
generated. By "better" we refer o a set {w} with a larger parameter M and a

higher Woays Be have carried out such a permutation analysis for the N

2 2

system_discussed helow and verificd that our sets of _input freauencies vielded

Fourier amplitudes A£ ) which were invariant to the freguency permutations.
i -3 SIS

L

c) Calculation of Fourier Ampli tudes

As discussed in section 11 of part I, we are only interested in the

Fourier sine amplitudes. For an input Trequency w, s the amplitude is

y

27
1 » . .
Aw£ = b “[ c[k(s)] sin w,S ds ; (2.6)

To compute this integral, one must evaluate the function c[k(s)] at a set of
points in the interval 0 =s = 2;. In the absence of any information on the
form of the output function ¢ we take the points to be equally spaced in that

interval,
s=gﬂ—q L a=1,2, ..., N (2.7)

where N is some integer. With these equally spaced points we can now conveniently

relate the Fourier coefficient Aw as defined by the integral (2.6) to the sun

3
pxo= 2 zNz Sinw s clB(s )] (2.8)
where
A¥ = A+ ¢ . (2.9)
R
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The error tern ¢, is given by
. |

n’l“
a :E:; A(nﬂ!«uj)

e J

where w3 is any frcquency in the spectrum of fTE(s)] ubich satisfies

m - uj = mg 5 (2.]])

This error term is due to “"aliasing" which inevitably occurs whenever a finite
number of points are chosen on an interval to evaluate Fourier amplitudes. For
axample, if N oequally spacad points are used, the amplitudes Aii) for w, will
unavoidably include the amplitudes of a component of frequency ij present in

cis) which satisfies the relation w9=mN—mj where m is an arbitrary integer.

The value of N is chosen to be the smallest integer such that

n
:E: bimi # mh A bi,m integers
=]

(2.13)

The Fourier amplitudes A, have been evaluated using Eqs. (2.8) through (2.10).
g

If the output function c(k) could be expressed as a polynomial of degree

Tess than or equal to M in the variables us,s i=1, ..., n, wvhere (see Eq. 2.2)

u. = 1In (% /k(°§
J Foil]
then the conditions {2.12) and (2.13) fmply that e, = 0 so that
%
A hy
L ’y




The conditions (2.11) through (2.13) also deternine N the minimun number of s
points required for the evaluation of ¢[K(s)]. These are listed in fable 1.

The Fourier amplitudes are related to a multiple integral of an output
function over the uncertainty space {see I. 2.12). One way of oblaining the
Fourier amplitudes without the troublesciie interferenzes and aliasing involved
in the method discussed above vould be to evaluate the n-dimensionul integral
of £q. (I. 2.12) directly. Ve have done this via simple Honte Carlo inteyrations.
Our results show that the number of integration points required by the Monte Carlo
method to give a cowparabie accuracy is much greater than the numbar required
in the Fourier enalysis. Stated another way, for a given number of integration
points (we used 200), the degree of accuracy of the Fourier method detailed
above far surpasses that of the ionte Carlo integration.

d) Choice of the leicht Function

As cmphasized in I, our final result, i.c. the relation

Au()i) « (ac;/du,) (2.16)

LY
involves a weight function p(ui) which can be interpreted as a distribution
function in u space which weights the uncertainty in the rate cocfficients. In
our treatment in part I, we used the weight function (sce Eq. 2.20)
a.

- i
p(ui) ~ cosh d?ﬁ} (2.17)

which had several desirable properties. It is, for instance, bell shaped about

: 0 -
ui=0 corresponding to ki=k§ ), the  "best" valuc of the rate coefficient ki'
For couputational convenicnce, we have used two different weight funciions for

the calculations presented in section II1 below corresponding to 1wo different

B e

i RN GBI AN

PRIe iy i i ¥ : - 3 4 Sl i R G A D) Fe i m AT A BLEALT S il .



e
P

e
¥
w

transformations u, = u(mis). As we had hoped and expected, our results did not
depend significantly on the choice of the weight function. This indicates that
our output functions c(k) werce "well behaved", i.e. did not have any large local
excursions in U space. It is also in agreement with the discussion in the last
paragraph of scction JIL of part I.

As is shown in part I, the form of the weight function p(ui) depends upon
the choice of the transformation function f of Fq. (I.2.3). For the Fourier
amplitude metiiod to be at all useful, our results on the relative magnitudes of
the Fourier amplitudes must clearly be independent of the explicit form of the
transformation function. The insensitivity of our results to our choice of
transformaiion function (and thus of the weight functions) verifies the validity

of FAST in this respect.

IT1. APPLICATION OF FAST TO CHEMICAL SYSTEHS
e have applied FAST to two relatively simple reaclion systems as a
test of its utility as a diagnostic tool. Both systems were assumed, for

simplicity, to react at constant temperatures and volume. These restrictions

arc in no way nccessary for the application of FAST. The concentrations werc

0. a
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integrated in time with a code using Gear's(z) algorithmn. These integrations
were carried out once for each of the N value: of s with the corrasponding
values of the n rate coefficients,'ﬁ(s), up to some time t. This yielded the
output function ci[ﬁ(s),t], i.e. the concentration of species 1, i=1, 2, ..., m,
as a function of time. The Fourier analysis of ci[ﬁ(s),t} was then carried out
at several selected times. The uncertainties in the rate coefficients were
arbitrarily assumed to be much larger than werranted by the available experi-
mental data in order to check out FAST. It should therefore he pointed out
again that the primary purpose of the calculations presented here is to demonstrate Eé

the validity and utility of FAST &s a diagnostic tool and not to provide new

information about the selected reaction systens.

a) Iligh Temperature Air Reaction

(3) i

We consider the following simplificd reaction system® :
0, = 1 == 20+ AR j ;
Ny + B ==2 20 + i o0 Ky (2) ik
NO+ M &= N+0+ N kg, Ky (3)
Ny + 0 &= HO + N kgs Ky (4) _
0, + N &= HO + 0 ks K (5)

The rate coefficients ki’ i=1, ..., 5, refer to the torward recactions, the rate

coefficients k_] for the reverse reactions are obtained from the equilibrium

constant Ki through the relation Ki = ki/k—i' In the system and the one dis-

cussec below in I1lb, the cquilibrium constants are assumed to be known exactly,

A

i.c. with zero uncertainty. The forward and veverse rate coefficients ki’ P—i

for each reaction therefore have identical uncertainties and the number of




independent uncertainties is equal to the nuiber of cquilibrium constants. It
is, of course, not necessary to proceed this way and one can instead assign
different unceﬁtaiﬁties to the forward and reverse rate coefficients which reflect
uncertainties in the equilibriun constants.

The system was assumed to react at a constant tenmperature of G000°K and

constant volume. The rate coelficients, equilibrium constants and initial con-

ditions used in this calculation are shown in Table II.

‘ The equilibrium constants represent the latest and "bost" Titerature valucs we
. could find and the rate coefficients 1isted in this table arce the k§o) of

Eq. (2.2). 1In Fig. 1 we shov a plot of the time evolution of this reaction

system obtained Trom the integration of the rate cquations using the rate

¥ < I )
' coefficients ksg" of Table II.
.
] Khile the real uncertainly of these rate coefficients is not too large,
|
we assuried arbitrarily for the purpose of testing FAST that the experinental
x
o

uncertainties were T two orders of magnitude for each of the five independent
sets of rate coefficients. To tuake account of this uncertainty we then write
(sce Fq. (2.2))

k(0) o=4.606 <k, s k§°) AL BT ey B o (3.1)

For our sensitivity analysis we used the frequency set (sec Table I)

3
b
&

;
b,
h g {w} = (2, 42, 62, 74, 90) (B82))
{ ; for wihich the sma]]ést nunber N of evenly spaced points satisfying the conditions
: of tqs. (2.4, 2.5, 2,12, 2.13) in the s interval, 0 = s < 24, is 191.
b { e carried out the Fourier analysis of the output function ci[F(s)] at
g . i In
. | t = 1070 sec and 10 ) sec. frrom Egs. (2.2), (2.3) and (3.1) we have
b |
: E u, = 4,606 sin w3 S ‘ . (¥31%3})
. k'
;f' -11- a-
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The concentrations of the various species, ”2’ 02, MO, O, !N, were calculated
at 10"6 sec and 10"4 scc for cach of the 191 s values by integrating the rate
equations. The 191 values of the concentration of the above species at a given
time define the output function ci[ﬁ(s)] which 1s now Fourier analysed by
computing the Fourier coefficients from Eqs. (2.8) through (2.13) using the sect
of input fresuencies of Eq. (3.2). An example of the function ci[K(s)] for 1O
at t = 10"4 sec is shown in Fig. 2. This curve has been drawn by connecting
the 191 calculated concentrations of #0 (one for each of the 191 evenly spaced
valuas of s) by straiyht lines.

| The results of the Tourier analysis at t = 10"6 scc are shown in Table
I11. The high values of the Fourier amplitudes associated with the rate coef-
ficients k], k_] for the concentration of 0 and 02'(500 blocks 1 and 2 of
Table III) indicate thot a variation in k] and k_] has a greater effect on the
concentration of 0 and 02 than the variation of any of the other rate coefficients.
This follows immediately from Eq. (2.16), where now i refers to the 0 atoms
and 02 molecules and v, = 2 refers to the rate coefficients k] and k_]. e can
rephrase this by saying that, at this early time in the reaction, only reaction
(1) is important in the production of 0 atoms and the disappearance o) 02
molecules. The sign of the amplitudes in the last column can be understood from

Eq. (2.16) according to which the amplitude A(1)

is proportional to (dc./du ).
wz 1 £

Thus the negative sign of the Fourier amplitude for k] for the concentration of

0., (block 1, Tahle I11) simply indicates that [02] decreases with increasing k].

2
The positive sign for the Fourier amplitude for k] for the concentration of 0
atoms (block 2, Table 1I11) indicates that [0] increascs with increasing k].
From the relative wagnitudes of the Fourier amplitudes in hlocks 4 and 5 of

Table I1I, it will be notel that the formation of N and NO at these early times

-12- a~




in the reaction is nost sensitive to reactions (1) and (4). This is quite
reasonable since ot t = 10'6 sec the formation of W and MO via reactions (2)

and (5) cannot play any important role owing to the small value of kéo) as
compared to k%o) (sce Teble 1I). A number of other conclusions as to the
sensitivity of the concentrations of the various species with res .t to vari-
ation of the rate coefficients can be drawn from a study of the resvlts in Table
IIT. A1l these conclusions are in accord with one's knowledge and intuition of
this rather simple reaction system.

In Table IV we present our results for t = 10'4 sec. At this time, as
can be seen from Fig. 1, the concentrations of reactants and products are,
except for HZ’ significently different from their initial values. The coupling
between the various reactions has coie into play much more strongly at this later
time and one would expect that the influence of the uncertainties in the rate
coefficients on the concentrations of tha various species is more complex. This
can readily be verified from the data in Table IV, where there is now no loager
such a proncunce¢ order of magnitude effect in the Fourier amplitudes. Let us
arbitrarily use a factor of about 10 to distinguish between the "relatively
important” amplitudes (i.e. the concentration of the species is very sensitive
to the chanye of a specific rate coefficient) and the "relatively unimportant®
amplitudes (i.c. the concentration of the species i¢ nct very sensitive to the

\
change of a specific rate coefficient). Then the data of Table 1V indicates
that [02] and [0] are affected primarily by uncertainties in k], [Nz] is
affected about cqually by uncertainties in all of the rate coefficients, [N] is
rost affccted by uncertainty in k], and [#0] is least affected by uncertainty

in kz. The least "sensitive" rate coefficient is kz, which determines the rate

-13- -
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of dissociation of NZ' This is not surprising since k2(0) is smaller than the 4

: i
other rate coefficients by 2 to 4 orders of magnitude. The important point to 1

) : !.

19 note is that owing to the strong coupling of all the rcactions at this stage of '3
1 4 %
4 Al ; g
§ the kinetic development, a number of the elementary rate processes contribute {4

significantly to the production and removal of most of the species, so that the

concentration of these species are quite sensitive to uncertainties in several '?
{?f rather than just one rate coefficient. This result is certainly not unexpected,
: . b) The I, - 0, Reaction I
‘ The H2 - 02 combustion system was modeled by the following set of chenical f?
reactions(a): 5
H2 + M oemmm 24 Ly k], (] (1)
02 b o= 20 + M k2, (2 (2)
L OH + M <=2 0 & ff + M kg Ks (3)
H20 + M oEms ok O+ M k4, K4 (4) |
H + Ozziflf OH + 0 k5, (5 (53) ; |
v 0+ iy === OH + I - kes ks (6) % '."
Hy + OHT==2 11,0 + 1] kys Ky (7) ¥
‘ 0, + 1, &== 20i kgs Ky (8) 1
- O + OH === 1,0 + 0 kg Ky (9) '
The system was assuned to react at a constant temperature of 2000°K and constant ;
n volume, with only Hé and 02 present at t = 0. )
g The initial conditions, rate coefficients and equilibrium constants are
shown in Table V. The rate coefficients Tisted in this table are the kgo) of
) Eq. (2.2); the equilibrium conctants are assymcd to be known with zero uncertainty. |
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We assuned arbitrarily that the experimental uncertainties for ecach of

the nine independent rate coefficients were * one order of magnitude so that

kgo) e—2'303 = ki slﬁf) 93’303 : AN P2 B O (3.4)

For our analysis we used the frequency set
{w} = (19, 59, 91, 113, 133, 14 SEmTLORIS 781G 1) (3.5)

for which the smalicst number M of evenly spaced points in the s interval,
O sis =22 70 S 163 (),

A plot of the concentrations of the various species for the time interval
10"4 =t 210 seconds, calculated with the k§0> of Table V is shown in lig, 3.
We have employed FAST to study the sensitivity of the species concentrations to
uncertaintics in the rate coefficients at 10"8 seconds and 10'3 seconds. These
results are shown in Tables VI and VII.

At the very early time of 1078 seconds (Table VI), the Hy and 0, concen-
trations have not changed significantly from their original value (to within
¢ significant places) and the Fourier qmp]itudes are mevely round-off error.
For H atoms, reaction (1) seems to be the major contributor to its formation
at this early time and its rate coefficient is the most sensitive in determining
the accuracy of [H]. Reactions (7) and (8), which together also produce I atoms,
are also important but the concentration of H atons is not as sensitive to k7
and k8 a2 SN Sl F]' The sensitivity of [H] tc these two rate coefficients has
identical values which is not surprising since [H] is proportional to k7-k8 at
this early time. The same arqument also holds for the production of H,0 since
its concentration at 10—85econds is proportional to k

7'k8' The HZO concentration

L



is also sensitive to k5, since rcuction (5) appeiars to be partly responsible

for the production of the O which enters into reaction (7). The concentration
of O atoms is most sensitive to k, which is again as expccted. Finally, the OH
concentration is most sensitive to k8 which is also most reasonable, since at
this ecarly time, only the direct reaction between O2 and Il2 would he expected-

to effcct the Oif concentration. Again, the results of FAST are in good agreement
with what could be predicted on the basis of chemical knowledge,

At t = 10'3 seconds (Table VII) the story is quite different. As can be
seen from Fig. 3, significant changes from the initial concentrations have
occured by this time, and the reactions are now strongly coupled. This is
reflected in the array of Fourier amplitude in Table VII as compared to those
of Table-VI. ilow, for instance, rate coefficient k5 corresponding to the chain
branching step (5) wiich produces H and 0 atoms is the most influential onc in
controlling the concentration of all species. The H atoms concentration, in
addition, is equally sensitive to k7. A1l other rate coefficients, except for
k3, which is very small for all species, have about equal sensitivities to
within a factor of 10 as measured by their Fourier amplitudes. According to
our theory and calculations then, the rate coefficient which needs to be

deterimined with the highest accuracy for the accurate calculation of all species

. -3 | . - .
concentration at 10 ~ secconds is k5 vith k7 next in line. Uncertainties in the

other rate coefficients will have a smaller effect on the species concentrations,
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IV. CONCLUDING REMARIS

It should be realized that the applications presented here are only a

first cut at the subject. It appears that FAST is a useful diagnostic tool in
determining the sensitivity of the results of complex caleulations to the

paramaeters which enter the calculations. The Fourier amplitude method cleurly

neads further testing on more complicatled systems than the ones dealt with in
this paper. Such tests should also involve comparison with various types of
"brute force" calculations.

In addition to app lications to larger systems, there are also a number of

theorelical-computational questions which need further investigation. Some

examples are:  the influence of the range of uncertaintics, with different

uncertainties for different coupling parameters, on the relative magnitudes of

the Fourier amplitudes; the influence of the choice of the input Trequencies {w}

and the spacing of the N values of the paraneter s on the Fourier amplitudes; and
the question whother the absolute magnitude of the Fourier amplitudes can be
used as a predictor for the actual change of the output function for a given
change of the coupling parameter. Additional work is being carried out to answer

these questions.
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FIGURE CAPTIONS

Time evolution of the i, - 0, system based on the Linotic data
2 " Yy %Y ,

in Table I1,

N . Y . . s -
The function ci[k(s)J for 10 at 10 ! sec between 0 and 2n as
a function of s. This curve has been drawn by connecting the
191 calculated values of the concentrations of {10 (corresponding

to the 191 valucs of s) by straight lines.

Tine evolution of the I, - O2 systems between t = 10"4 sec to

t = 10 sec based on the kinetic data in Table V.

-19-




i
."

P

10~

s g

107

10

10

~11

10

10712

i ! o T
o N.,] p
e g )|

o]

‘_"“—-——._

/ [0]
10+ [HNO]

H‘\-\""--._

|

]

L (1 l i

= -5 _4 = i S —

10

10

Time

& /;r/"/"

{zec)

26- a

10

Bttt -2 B
T -

P Y AR VB R ay .
Nk B T e e b St

i
Pt

SR A

) Sl

e

£




TR A YT A e R e S e B

2%

et o P e M ol s s e vt ST i,
= i
||..F.I||.,rq.I|||I.-||._.|
———
5
ﬂ
|I|III|I|I|.
e — ——
I|||I|II|L
e e BTN
s
=
—
—_—
——
_—
—— s
.l.l.-l.s.rl.ll
— iy s
—
ey =
—
|I.-|-.-.-.‘|

L 4

e STRUIICV s




a2 1078
|
. -—
' ]

» S
4]
8] ]
4]
|
0
E

E i

' 0
|
-
m —
o
4
3

¥ U
=
0
&)

]

10”44 L | : L
¢ =, e % -~ o
Time (scc)

x;h.ﬁ}w Shetlev




A :
Table 1
) b,
, FREQUENCY SETS AND CORRESPONDING NUMBER OF E
; POINTS AVOIDING INTERFERENCES b
: THROUGH 4th ORDER 4
: Dimension (n) Frequency Set {w} Minimum Number of Points (N) 3
I3 5 1, 21, 27, 35, 39 142 |
t . 5 2, 42, 62, 74, 90 , 191 4
4 6 1, 21, 31, 37, 45, 49 182 !
1 g 2, 42, 62, 74, 90, 98 231
&
L, 7 17, 39, 59, 69, 75, 83, 87 334
1 8 - 23, 55, 77, 97, 107, 113, 486
i 121, 125
i 9 19, 59, 91, 113, 133, 143 630
=" 149, 157, 161
10 25, 63, 103, 135, 157, 177, 806 {
187, 193, 201, 205 3
_ 1 41, 67, 105, 145, 177, 199, 974 4
£ 219, 229, 235, 243, 247 4
12 31, 87, 113, 1515 19]1,7 223, 1158
245, 265, 275, 281, 289, 293
13 23, 85, 141, 167, 205, 245 1374
23 277, 299, 319, 329, 335, 343, 347
14 87, 133, 195, 251, 277, 315, 1814
355, 387, 409, 429, 439, 445,
AR  AR7
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INITIAL CONDITIONS, RATE COEFFTCIENTS AND EQUILIBRIUM
CONSTANTS FOR THE HIGH TEMPERATURE AIR REACTION

Ta

Initial Conditions

ble 11

[N2] = 8 x 10'8 moles/cc

[02] =

2 x 1078

Rate Coefficients

k%") =

k0 =

elo) -

ko) -

0) _

s

8.5 x10'0

3.0 x 10

8.0 x 10°

9.0 x 10"

8.0 x 107

(moles/cc

0

1

)_] sec

it

Equilibrium Constants

K

1
K

A5

~
n

7~
1

7~
1

T ———

7.8 x 10°
1.0 x 107
1183 gx RLON
9.0 x 107

5.9 x 10]

4
7
5

3

moles/cc)

u
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S L Table 11

FOURIER ANPLITUDES OF THE CONCENTRATIONS AT ]0—6 SEC
FOR THE HIGH TEMPERATURE AIR SYSTEM

Input Frequency . Rate Coefficient Fourier Amplitude

[Oé] X 109 moles/cc

2 Ky -4.47
90 ke -0.0244
74 Ky -0.0227
42 K, 4.7 x 107°
62 ks -3.9 x 1074

2 : k] - 8.53
74 k4 ~0.36
90 k5 0.018
62 k3 -0.029
42 k2 0.0027

[Nz] x 10° moles/cc

2 k] . =0.389
74 k

4 -0.386




Table IV

FOURIER AMPLITUDES OF THE CONCENTRATIONS AT 10'4 SEC
FOR THE HIGH TEMPERATURE AIR SYSTEM

e
»

Input Frequency Rate Coefficient Fourier Amplitude

[02] x 108 moles/cc

i, 90 ks . -0.147
¥ 74 kg -0.087
i 62 ks -0.069
) | -0.044

A7

2
62 - k3 0.228
90 k 0

Rt i B st v £ oo
N T T PR S ey SRR TS

.164

1 42 k, 2 0.078
S K '

.33 74 k4 -0.00146

[Nz] X ]09 moles/cc

] v 74 Kk, . st
i 2 ky | -2.3
62 Ky -1.0
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‘r' | Table V
] 3 Initial Conditions, the Rate Coefficients and Equilibrium
a1 _ Constants for the H2 -0, Reaction

L ¥ Initial Conditions
| [Hz] = 8.0 x 10'9 moles/cc
[0,] = 4.0 x 107 moleés/cc

Rate Coefficients

k? = 5.78 x 107 (mo]es/cc)']sec'] k2 = 4.0 x 10'3 (mo]es/cc)']sec']

kD = 4.47 x 108 o k9 = 1,51 x 103 v
0 _ 5 " o _ 6 "
Ak3 =1.03 x 10 k8 = 2.20 x 10
K = 6.79 x 10° ° K0 =1.6xi0% o
4 9 )
k2 = 1.23 x 1012 »
Equilibrium Constants
Ky = 1.59 A S AL
— "12 1 i
K2 et 2.69 X ]0 K7 e 9-76 =
K, = 1.14 x 10711 » K. = 2.02 -
3= 1. g = 2
e "]2 ] -
Ky = 1.63 x 10 | Ky = 6.76 -
- -1
Ks = 2.37 x 10 -
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S Table VI

FOURIER AMPLITUDES OF THE CONCENTRATIONS AT 1078 SEC
FOR THE HZ - 02.REACTION

it R

—

R TP T e

’:\ﬁ
Rate Coefficient Fourier Amplitude Rate Coefficient Fourier Amplitude
' [H,2. [0,]
Insensitive to uncertaintijes Insensitive to uncertainties
in any rate constant. in any rate constant,
[H] x 10'° [0] x 10%0
? k] 4.67 k2 1.79
k8 0f202 k6 -0.016
k7 0.202 k] 0.0065
¥ k5 0.010 k5 0.0065
-5
k6 0.0023 k3 2.25x10
-5
k2 0.00165 k4 -1.95x10
r Ky 8.0x1075 kg 7.87x107°
-5 -6
k9 4.1x10 k8 1.20x10
. -5 -7
k3 | -3.0x10 k7 -8.46x10
: [0H] x 10'8 [H,0] x 1020
i kB 5.9 k8 2.03
k9 0.00176 k5 0.121
k5 :0.0014 k6 0.0066
K 1.61x107 Ky 8.35x107%
?
ks 9,73x10™° Ky -6.35x107%
K, 7.08x1075 kg 4.22x1074
: ke -7.43x1076 ks -2,81x107
ky 3.13x107° K, 1.33x1074
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Table VII

FOURIER AMPLITUDES OF THE CONCENTRATIONS AT 1073 sgc
' FOR THE H, - 0, REACTION.

Rate Coefficient _Fourier Amplitude Rate Coefficient Fourier Amplitude

j § [H,] x 10° H1x10°
| ke a3 . kg 1.92
ky -0.346 | R 1.92

g . -0.313 ks 0.122
1 kg -0.172 kg 0.102
; -0.108 0.061
Al e -0.101 0.0466
5 -0.0905 0.0439
: 0.0176

-0.00318

Fol
N

L | ¥

» =
S W

] ‘0.049]
k3 0.0119

Fol

4

A s e i e ST
4 -‘m"rt‘bf-"”::_'.[."‘}"‘. IS

»
W

i st

[0,] x 10° [0l x 10'°

-1.77

-0.153
-0.089
-0.070

5.77
0.420
0.164
0.162
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E: l. R.I. Cukier, C.N. Fortuin, K.E. Shuler, A.G. Petschek fg
and J.H. Schaibly, J. Chemn. Phys.....(preceding paper) %?
' * 3 g’
2. C.W. Gear, "The Numerical Integration of Stiff P 3
' :
Differential Equations," University of Illinois, Dept. |
of Computer Sciences, Report No.221, Jan. 1967. i
".

3. The equilibrium constants were calculated from data in

B.J. McBride, Thermodynamic Properties to 6000° K
for 216 Substances Involving the First 18 Elements,

¥ NASA, SP-3001 (1963). The rate coefficients were
taken from: J.C. Schexnayder and J.S. Evens, NASA
Technical Report R-108, (1961); H.S. Glick, J.J. Klein,
and W. Squire, J. Chem. Phys., 27, 850 (1957) ;

2 G.B. Kistiakowski and G.C. Volpi, J. Chem. Phys.27,
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N

1141, (1957). We are aware that more recent "nominal"
values of the various rate coefficients exist in the |
literature but feel that the values used in our 15

2 calculations are adequate for the purpose of this
paper.

e

4. The equilibrium constants were calculated from the 3
 data in McBride (see Ref.2.); the rate coefficients
were obtained from the compilation of G.S. Bahn,

" Reaction Rate Compilation for the H-0O-N System,

Gordon and Breach Science Publishers, New York (1968).
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